Privacy in the loΤ

A generic framework for information and consent for the IoT

Mathieu Cunche, Daniel Le Métayer, and Victor Morel

Inria

victor.morel@inria.fr

July 26, 2019 TRUSTCOM19

(Mis)Information and (Forced) Consent

Privacy in the IoT

Mathieu Cunche, Daniel Le Métayer, and <u>Victor Morel</u>

Introduction

Contribution

Options

Conclusion

https://twitter.com/_LoboTom_/status/1109106043706109952

https://www.liberation.fr/checknews/2019/03/25/

les-panneaux-de-pub-du-metro-tracent-ils-les-telephones-des-usagers_1717316

No need to ask...?

Privacy in the loΤ

Introduction

NEWS >

TfL introduces wifi tracking to improve ads

By John McCarthy - 22 May 2019 17:15pm

Transport For London (TfL) will soon collect depersonalised wifi data from commuters connected to wifi at 260 of its stations. The anonymised data will help TfL understand how people move through the system and will eventually inform real-time traffic updates and advertising.

3

 $^{^3}_{\tt https://www.thedrum.com/news/2019/05/22/tfl-introduces-wifi-tracking-improve-ads}$

"Anonymized"

Privacy in the IoT

Mathieu Cunche, Daniel Le Métayer, and Victor Morel

Introduction

Contributio

Options

Conclusion

ARTICLE

OPEN

Estimating the success of re-identifications in incomplete datasets using generative models

Luc Rocher

1,2,3, Julien M. Hendrickx

4 Yves-Alexandre de Montjoye

2,3

While rich medical, behavioral, and socio-demographic data are key to modern data-driven research, their collection and use raise legitimate privacy concerns. Anonymizing datasets through de-identification and sampling before sharing them has been the main tool used to address those concerns. We here propose a generative copula-based method that can accurately estimate the likelihood of a specific person to be correctly re-identified, even in a heavily incomplete dataset. On 210 populations, our method obtains AUC scores for pre-dicting individual uniqueness ranging from 0.84 to 0.97, with low false-discovery rate. Using our model, we find that 99.98% of Americans would be correctly re-identified in any dataset using 15 demographic attributes. Our results suggest that even heavily sampled anonymized datasets are unlikely to satisfy the modern standards for anonymization set forth by GDPR and seriously childrenge the technical and legal adequacy of the de-identification release-and-forget model.

⁴Rocher, Hendrickx, and de Montjoye, 2019.

GDPR

Privacy in the IoT

Mathieu Cunche, Daniel Le Métayer, and <u>Victor Morel</u>

Introduction

Contribution

Options -

Conclusio

- General Data Protection Regulation in May 2018
- Relevant guidelines for privacy protection
 - → Transparency about data collection and processing
 - → Information required for consent
- DC: Data controller (legally responsible)
- DS: Data subject (in other words: user)

Challenges for the GDPR in the IoT

Privacy in the IoT

Mathieu Cunche, Daniel Le Métayer, and Victor Morel

Introduction

Contribution

Framework
Options
Prototype

Conclusio

- Toothless if not complemented with proper technologies
- The Internet of Things presents difficulties
 - → Numerous devices, various uses
 - → Limited capacities, inappropriate/non-existent interfaces

How do we inform and manage consent in the IoT?

- Intelligible and systematic information of DS?
- Privacy-preserving and demonstrable consent?

A generic framework

Privacy in the IoT

Mathieu Cunche, Daniel Le Métayer, and Victor Morel

Introduction

Contribution

Framework

Options Prototype

Conclusio

Provides facilities for the following requirements:

- With respect to information
 - → To declare DC devices
 - ightarrow To receive information by DS
 - \rightarrow To facilitate understanding
- With respect to consent
 - ightarrow To minimize fatigue
 - → To ensure data is collected iff consent is provided
 - → To facilitate demonstration of obtention of consent

Unambiguity of formal semantics

Generic in the sense that...

Privacy in the IoT

Mathieu Cunche, Daniel Le Métayer, and Victor Morel

Introduction

Contribution

Framework Options

Conclusio

Small number of technical requirements

- Agnostic of collection protocol
- Agnostic of types of devices
- Agnostic of fielding configurations

Actors are represented by devices

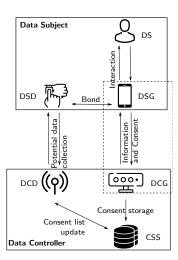
- DC by DCG
- DS by DSG

Different manners to implement the framework

Visual representation

Privacy in the IoT

Mathieu Cunche, Daniel Le Métayer, and Victor Morel


Introduction

Contribu

Framework

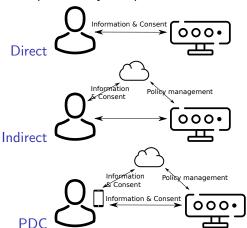
Options

Conclusion

Technical options

Privacy in the IoT

Mathieu Cunche, Daniel Le Métayer, and Victor Morel


Introduction

Contributio

Options

Conclusion

Three complementary components:

Direct communications

Privacy in the IoT

Mathieu Cunche, Daniel Le Métayer, and Victor Morel

Introductio

Contributio

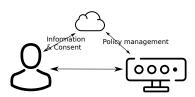
Options Options

Conclusion

- DC policy broadcasted via beacons
- Communication is local and P2P
- Can use Bluetooth Low Energy (BLE)
- Consent can be sent using Attribute Protocol (ATT)

Indirect communications

Privacy in the IoT


Mathieu Cunche, Daniel Le Métayer, and Victor Morel

Introductio

Contribution

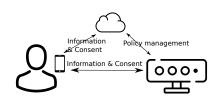
Options Options

Conclusio

- DC registries for information
- DS registries for consent
- Information can be a priori
- Especially appropriate when interaction not needed

Personal Data Custodian

Privacy in the IoT


Mathieu Cunche, Daniel Le Métayer, and <u>Victor Morel</u>

Introduction

Contribution

Options

Conclusio

- Enable interactions with DS
- Retrieve information
- Manage consent
- Definition of DS policy
- Can use PILOT privacy language⁵

⁵ "Analysis of Privacy Policies to Enhance Informed Consent (Extended Version)".

A design space

Privacy in the IoT

Mathieu Cunche, Daniel Le Métayer, and Victor Morel

Introduction

Contribution

Options

Prototype

Conclusio

Provides guidelines for implementations

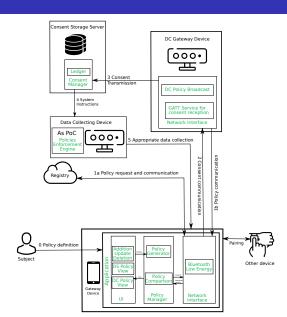
Examples

- Informing about passive sensors?
 - → Use an additional device or indirect communications
- Informing about moving sensors?
 - → Prefer direct communications
- Device with scarce resources?
 - ightarrow Direct communications without pairing are not possible

ColoT

Privacy in the IoT

Mathieu Cunche, Daniel Le Métayer, and Victor Morel


Introduction

Contributio

Framework

Options

Conclusion

Retrieving policies

Privacy in the loT

Mathieu Cunche, Daniel Le Métayer, and Victor Morel

ntroduction

C-----

.

Ontions

Conclusion

Figure: Scan Figure: Registry

Managing Data Subject Policy

Privacy in the IoT

Mathieu Cunche, Daniel Le Métayer, and Victor More

ntroductio

Contribution

Framewor

Options

Prototype

Conclusio

Figure: Rules Figure: My DSP

Consent and negotiation

Privacy in the IoT

Mathieu Cunche, Daniel Le Wétayer, and Victor Morel

Introduction

Contribution

C-----

Options
Prototype

Conclusion

```
Contains DS policy
  "pilotRule": [{
    'datatype': "Wi-Fi MAC Address".
      "entity": "Google".
      "dur": If
        "purpose": "Marketing".
        "retentionTime": 30
   31
 }, {
    "datatype": "Location",
    "dor": [f
      "entity": "Interparking",
      "dur": [{
        "nurnose": "Analytics".
        "retentionTime": 30
   31
    'datatype': "Wi-Fi MAC Address",
    "dcr": [{
      "entity": "Decathlon",
        "purpose": "Analytics",
        "retentionTime": 30
   31
 }]
Received a new consent:
Value: :: Consent:: {84: CF: BF: 8A: 99: 21, }, 733aa15ade77a423ea82ded72be0ddcb
********
```

Figure: Negotiation

```
Paccatived a new consent:
Length:12
value: :(Consent::(S4:CF:SF:84:99:21.C7:32:E9:C1:34:20).Sud203db510215b8caca6e72f030ae9b
```

Figure: Consent for two devices

Presentation past/future work

Privacy in the IoT

Mathieu Cunche, Daniel Le Métayer, and Victor Morel

Introduction

Contributio

Options o

Conclusion

To conclude

- A generic framework for information and consent
- Feasible options
- Prototype: ColoT
- Work to do on consent signature & ledger
- Impact on the European ePrivacy directive?
- Thank you for your attention
- Check me out: http://perso.citi-lab.fr/vmorel/

Other features of ColoT

Privacy in the IoT

Mathieu Cunche, Daniel Le Métayer, and Victor Morel

ColoT features

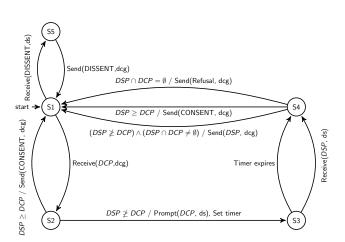
DDME

Scenario

State of the

Design space

Figure: Bond Figure: Generic rules


Data Subject Gateway

Privacy in the IoT

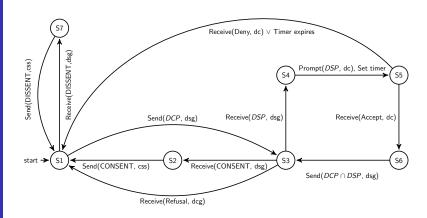
Mathieu Cunche, Daniel Le Métayer, and <u>Victor Morel</u>

PPNP

State of the

Data Controller Gateway

Privacy in the IoT


Mathieu Cunche, Daniel Le Métayer, and Victor Morel

ColoT feature

PPNP

Scenario

Art

Policies match

Privacy in the IoT

Mathieu Cunche, Daniel Le Métayer, and Victor Morel

featui

Scenarios

State of the

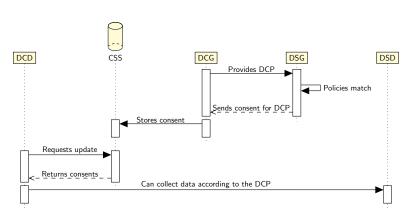


Figure: Policies match

Request interaction from DS

Privacy in the IoT

Mathieu Cunche, Daniel Le Métayer, and <u>Victor Morel</u>

Colo T features

PPNP

Scenarios

State of the Art

Design s

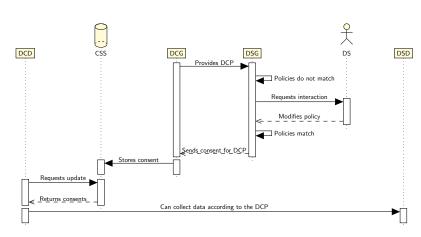


Figure: The policies do not match at first, the *DSG* requests an interaction from the data subject. The modification results in a match.

No collection

Privacy in the IoT

Matnieu Cunche, Daniel Le Métayer, and <u>Victor Morel</u>

ColoT features

.cata.c

Scenarios

. . . .

Art of the

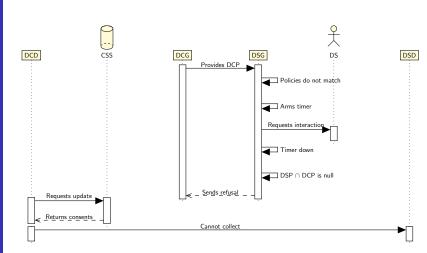


Figure: The policies do not match, and the data subject does not interact

Intersection

Privacy in the IoT

Mathieu Cunche, Daniel Le Métayer, and <u>Victor Morel</u>

ColoT feature

PPNF

Scenarios

Art

Design space

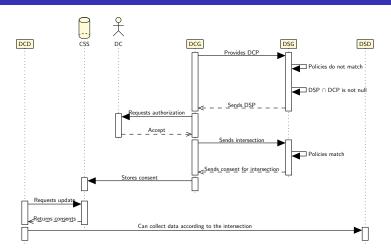


Figure: The policies do not match, but an agreement is made on the intersection of policies

Similar projects

Privacy in the IoT

Mathieu Cunche, Daniel Le Métayer, and <u>Victor Morel</u>

featur

PPNP

Scenarios

State of the Art

Jesign space

Smart places THIS VENUE USES LOCATION INFORMATION FROM MOBILE DEVICES WWW.MART-PLACES ORG Wombat

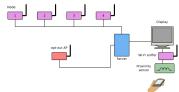


Figure VII.1 - Architecture of the Wombat system in a demonstration configuration.

PawS

PPA for IoT

Limitations of the SotA

Privacy in the IoT

Mathieu Cunche, Daniel Le Métayer, and Victor Morel

featur

.

State of the Art

Design space

Flaws of the related work

- Cost → heavy infrastructure
- Scalability → heavy infrastructure
- ullet User interaction o no negotiation
- Flexibility → lack of granularity
- ullet GDPR compliance o framework devised to this end

PawS

Privacy in the IoT

Mathieu Cunche, Daniel Le Métayer, and <u>Victor Morel</u>

featur

PPNI

State of the Art

. ·

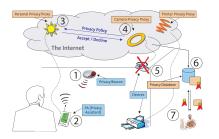


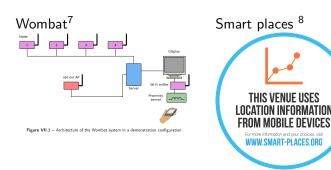
Figure: PawS architecture

- Early work⁶
- Distinction between assistant and proxy
- P3P for privacy language
 - \rightarrow No negotiation
 - → Requires prior knowledge

⁶Langheinrich, 2002.

Mobile location analytics opt-out

Privacy in the IoT


Mathieu Cunche, Daniel Le Métayer, and <u>Victor Morel</u>

feature

PPNF

Scenario

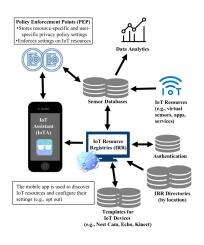
State of the Art

⁷ "Wombat: An Experimental Wi-Fi Tracking System".

⁸https://smart-places.org/

Personalized Privacy Assistant for the IoT

Privacy in the IoT


Mathieu Cunche, Daniel Le Métayer, and Victor Morel

feature

PPNP

occitatio

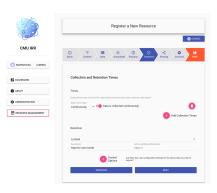
State of the Art

- CMU project⁹
- IoT Resource Registries
- IoT Assistant
- Possibility to set privacy preferences through an assistant
 - → Registration mandatory
 - → GDPR?

⁹Das et al., 2018.

IoT registry

Privacy in the IoT


Mathieu Cunche, Daniel Le Métayer, and Victor More

ColoT features

PPNP

Crara Cub

State of the Art

- CMU project¹⁰
- Smart building
- Online registry of devices
- Information about data collection and processing
 - $\rightarrow\,$ Costly and specific
 - → Heavy infrastructure

¹⁰Pappachan et al., 2017.

IoT Assistant

feature

Scenario

State of the Art

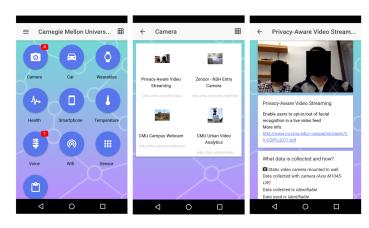


Figure: Privacy Assistant of CMU

A design space

Privacy in the IoT

Mathieu Cunche, Daniel Le Métayer, an Victor More

feature

PPNP

State of t

Design space

Table: Technical options for information as a function of the DC device

Features of DC device	Direct communications without beacon	Direct communications with beacon	Indirect communica- tions
Passive sensor	X		
Active sensor with ex- tensible protocol		(x)	
Active sensor without extensible protocol	X		
Fixed sensor			
Moving sensor			(X)

A design space

Privacy in the IoT

Mathieu Cunche, Daniel Le Métayer, and Victor Morel

feature

PPNP

State of the

Design space

Table: Technical options for consent as a function of the DS device

Features of the DS device	Direct commu- nications with- out pairing	Direct com- munications with pairing	Indirect com- munications	A priori en- forcement	A posteriori enforcement
Device with ex- tensible protocol		(x)	(x)		
Device with- out extensible protocol	Х				
Device with sub- stantial resources		(x)	(x)		
Device with scarce resources	X				
Systematic col- lection process				X	
Selective collec- tion process					(x)
Pre-existing rela- tionship					
No pre-existing relationship			X		